A Krengel-type theorem for finitely generated nilpotent groups

نویسندگان

  • V. Bergelson
  • I. Kornfeld
  • A. Leibman
چکیده

has density one in Z with respect to some sequence of intervals Ik = [ak, bk] with bk−ak → ∞. (This means that d{Ik}(S) = lim k→∞ |S∩Ik| bk−ak+1 = 1.) A vector f ∈ H is called weakly wandering if there is an infinite set S ⊆ Z such that for any n,m ∈ S, n 6= m, one has 〈Uf, Uf〉 = 0. The following theorem due to U. Krengel gives a characterization of weak mixing in terms of weakly wandering vectors.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Results on Baer's Theorem

Baer has shown that, for a group G, finiteness of G=Zi(G) implies finiteness of ɣi+1(G). In this paper we will show that the converse is true provided that G=Zi(G) is finitely generated. In particular, when G is a finite nilpotent group we show that |G=Zi(G)| divides |ɣi+1(G)|d′ i(G), where d′i(G) =(d( G /Zi(G)))i.

متن کامل

Elementary Equivalence and Profinite Completions: a Characterization of Finitely Generated Abelian-by-finite Groups

In this paper, we show that any finitely generated abelian-byfinite group is an elementary submodel of its profinite completion. It follows that two finitely generated abelian-by-finite groups are elementarily equivalent if and only if they have the same finite images. We give an example of two finitely generated abelian-by-finite groups G, H which satisfy these properties while G x Z and H x Z...

متن کامل

Polynomial Structures for Nilpotent Groups

If a polycyclic-by-finite rank-K group Γ admits a faithful affine representation making it acting on RK properly discontinuously and with compact quotient, we say that Γ admits an affine structure. In 1977, John Milnor questioned the existence of affine structures for such groups Γ. Very recently examples have been obtained showing that, even for torsion-free, finitely generated nilpotent group...

متن کامل

Model theoretic connected components of finitely generated nilpotent groups

We prove that for a finitely generated infinite nilpotent group G with a first order structure (G, ·, . . .), the connected component G of a sufficiently saturated extension G of G exists and equals ⋂ n∈N {g : g ∈ G}. We construct a first order expansion of Z by a predicate (Z,+, P ) such that the type-connected component Z ∅ is strictly smaller than Z. We generalize this to finitely generated ...

متن کامل

On the asymptotic geometry of abelian-by-cyclic groups

Gromov’s Polynomial Growth Theorem [Gro81] states that the property of having polynomial growth characterizes virtually nilpotent groups among all finitely generated groups. Gromov’s theorem inspired the more general problem (see, e.g. [GdlH91]) of understanding to what extent the asymptotic geometry of a finitelygenerated solvable group determines its algebraic structure—in short, are solvable...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999